Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK.

نویسندگان

  • Melina Fan
  • James Rhee
  • Julie St-Pierre
  • Christoph Handschin
  • Pere Puigserver
  • Jiandie Lin
  • Sibylle Jäeger
  • Hediye Erdjument-Bromage
  • Paul Tempst
  • Bruce M Spiegelman
چکیده

The transcriptional coactivator PPAR gamma coactivator 1 alpha (PGC-1alpha) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1alpha in humans have been associated with type II diabetes. PGC-1alpha contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1alpha by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and beta-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1alpha. The binding and repression of PGC-1alpha by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1alpha. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1alpha's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1alpha from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1alpha function and provide a molecular mechanism for the activation of PGC-1alpha by p38 MAPK. The discovery of p160MBP as a PGC-1alpha regulator has important implications for the understanding of energy balance and diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway.

Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) promotes mitochondrial biogenesis and slow fiber formation in skeletal muscle. We hypothesized that activation of the p38 mitogen-activated protein kinase (MAPK) pathway in response to increased muscle activity stimulated Pgc-1alpha gene transcription as part of the mechanisms for skeletal muscle adaptation. Here ...

متن کامل

Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.

From a cell signaling perspective, short-duration intense muscular work is typically associated with resistance training and linked to pathways that stimulate growth. However, brief repeated sessions of sprint or high-intensity interval exercise induce rapid phenotypic changes that resemble traditional endurance training. We tested the hypothesis that an acute session of intense intermittent cy...

متن کامل

Signaling of mitochondrial biogenesis following oxidant injury.

Mitochondrial dysfunction is a common consequence of ischemia-reperfusion and drug injuries. For example, sublethal injury of renal proximal tubular cells (RPTCs) with the model oxidant tert-butylhydroperoxide (TBHP) causes mitochondrial injury that recovers over the course of six days. Although regeneration of mitochondrial function is integral to cell repair and function, the signaling pathwa...

متن کامل

Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle.

Peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) is a transcriptional coactivator that plays a key role in coordinating mitochondrial biogenesis. Recent evidence has linked p38 MAPK and AMPK with activation of PGC-1alpha. It was recently shown in rodent skeletal muscle that acute endurance exercise causes a shift in the subcellular localization of PGC-1alpha from the cy...

متن کامل

PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity.

The peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) is a major regulator of exercise-induced phenotypic adaptation and substrate utilization. We provide an overview of 1) the role of PGC-1alpha in exercise-mediated muscle adaptation and 2) the possible insulin-sensitizing role of PGC-1alpha. To these ends, the following questions are addressed. 1) Ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2004